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Abstract
We obtain for the first time the expressions for the mean and the variance of the
transmission coefficient for an Anderson chain in the weak localization regime,
using exact expansions of the complex transmission and reflection coefficients
to fourth order in the weakly disordered site energies. These results confirm
the validity of single-parameter scaling theory in a domain where the higher
transmission cumulants may be neglected. We compare our results with earlier
results for transmission cumulants in the weak localization domain based on
the phase randomization hypothesis.

1. Introduction

The validity of the single-parameter scaling (SPS) hypothesis in the scaling theory of
localization of Abrahams et al [1] has been the object of numerous discussions since its
publication in 1979. This scaling theory assumes that the scaling of a typical conductance g as
a function of size L of a d-dimensional disordered sample is a function of only one parameter,
namely the typical conductance itself.

Soon after the appearance of [1] it became clear that one should consider the scaling of the
full probability distribution of conductance (or the distribution of a related scaling variable)
rather than simply that of a typical conductance [2]. SPS then requires that the distribution
of the chosen variable should scale to a universal form depending only on one parameter. A
simple example of such a statistical distribution is the familiar normal distribution in which the
large scale dispersion σ 2 decays to zero via the law of large numbers relating it to the growth
rate of the mean value, the only parameter of this distribution.

Many aspects of scaling of distributions of transport related quantities such as the resistance
r = 1/g were discussed some years ago by Shapiro and co-workers [3] and in a more recent
review [4].

Until recently analytical discussions of SPS have invariably relied on the so-called phase
randomization hypothesis [2]. This hypothesis assumes the existence of a microscopic length
scale, shorter than the localization length, over which the phases of the complex reflection
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and transmission coefficients of a disordered sample are randomized in such a way that their
distribution becomes uniform.

Let us briefly recall the scaling results for a 1D-disordered chain of length L. In this case a
convenient scaling variable related to the conductance is the finite scale Lyapunov exponent [2]

γ̄L = 1

2L
ln

(
1 +

1

g

)

= − 1

2L
ln tL , (1)

where the second line follows from using the Landauer four-probe formula, r = 1/g = rL/tL ,
which relates the resistance r (expressed in natural units of π h̄/e2) to the transmission (tL ) and
reflection (rL) coefficients of the chain. The advantage of the scaling variable γ̄L is that under
the assumption of complete phase randomization it obeys a normal distribution [3,4] of the type
alluded to above, in the strong localization regime, L � Lc (where L−1

c ≡ γ = limL→∞ γL is
the inverse localization length), for weak disorder1. The distribution is centred at the asymptotic
value L−1

c , with a dispersion

σ 2 = var γ̄L = γ

L
, (2)

i.e. it describes SPS in terms of γ = L−1
c . Equation (2) coincides with the general large number

law property for the validity of SPS for γ̄L proposed recently by Deych et al for the general
case where phase randomization is not hypothesized. In their work [7] Deych et al studied the
condition (2) analytically for an Anderson chain with a Cauchy distribution of site energies.
This has led them to identify a new characteristic length beyond which SPS holds true in their
system [7]. On the other hand, under the random phase assumption one-parameter scaling also
exists in the weak localization (quasi metallic) regime for weak disorder [3, 4], where L � Lc.
In this case the resistance r � 1(r � 2Lγ ) follows an exponential (Poisson) distribution [3,
4] depending on the sole parameter L−1

c . The condition for one-parameter scaling analogous
to (2) then reads (see also section 3)

σ 2 = 〈γ̄L〉2, (3)

where 〈· · ·〉 denotes averaging over the disorder. Equation (3) implies one-parameter scaling in
a domain where the higher cumulants of the resistance distribution are subdominant. We also
note that (3) is exactly verified (with 〈γ̄L〉2 = γ 2) by the exponential distribution of resistance
obtained in the framework of the random phase assumption for L � Lc.

The purpose of this paper is to analyse the validity of one-parameter scaling theory in the
weak localization regime, by deriving exact analytical results for the mean value and variance
of the transmission coefficient tL for a weakly disordered Anderson chain, without using phase
randomization. The resulting expressions for the variance σ 2 and the mean value 〈γ̄L 〉 of
the variable γ̄L are shown to obey approximately (for L � a, with a the lattice parameter)
a universal relation analogous to (3). Here the mean 〈γ̄L〉, which turns out to depend on
L, is completely defined in terms of a fixed localization length. The complex transmission
coefficient TL(tL = |TL |2) and reflection coefficient RL (rL = |RL |2) are obtained in section 2
by iterating the exact coupled recursion relations obeyed by these quantities [8, 9], for weak
disorder in the regime L � Lc. These results are used for obtaining explicit forms of the first

1 Note that the second line of equation (1) follows also from the definition of the alternative scaling variable
γ ′

L = −(1/2L) ln g, with g given by the Landauer two-probe conductance: g = tL . This Lyapunov exponent is
also self-averaging and obeys a normal distribution in the localized regime for random phases. As is well-known
the Landauer two-probe resistance, t−1

L , differs from the Landauer four-probe expression, rL/tL , by a fixed contact
resistance, which implies, in particular, that the resistance of a perfect conductor is finite [5, 6].
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two moments of the transmission coefficient tL and of the corresponding Lyapunov exponent
γ̄L . These moments are discussed in connection with the validity of one-parameter scaling
theory in section 3, where they are also compared with previous results based on the random
phase assumption.

2. Transmission in the weak localization regime

Consider a disordered linear chain of length L = Na composed of N disordered one-orbital
sites of spacing a = 1 described by the Schrödinger equation

ϕn+1 + ϕn−1 + εnϕn = Eϕn, (4)

where ϕm is the wavefunction amplitude and εm the random energy of the site m measured (like
E also) in units of the constant hopping rate between nearest-neighbour sites. We assume the
εm to be identically distributed independent Gaussian variables with mean zero and correlation

〈εmεn〉 = ε2
0δm,n . (5)

The usual Anderson model of uniformly distributed site energies between −W and W
correspond to ε2

0 = W 2/12. The disordered chain is connected to electron reservoirs by
semi-infinite non-disordered leads defined by sites m > N and m < 1, respectively. As
indicated in section 1, we wish to calculate the transmission coefficient tN = |TN |2 and to
study its statistical moments in the weak localization regime L � Lc, for weak disorder. The
inverse localization length is defined by

γ = 1

Lc
= − lim

N→∞
1

2N
ln tN . (6)

The complex transmission and reflection amplitudes for a plane wave incident from the right
(n > N) with wavenumber k and energy

E = 2 cos k, 0 � k � π, (7)

obey the exact coupled recursion relations [8, 9]

TN = eik TN−1

1 − iνN (1 + e2ik RN−1)
, (8)

RN = e2ik RN−1 + iνN (1 + e2ik RN−1)

1 − iνN (1 + e2ik RN−1)
, (9)

νN = εN

2 sin k
, (10)

which relate the amplitudes TN (RN ) for the chain of N disordered sites to those for a chain of
N − 1 sites, with the initial conditions T0 = 1 and R0 = 0. The choice of wavenumbers in (7)
is such that the leads eigenfunctions ϕn ∼ e±ikn correspond to Bloch waves travelling from
left to right and from right to left, respectively. The solution of (9) may be readily obtained
in terms of the reflection amplitudes for chains whose lengths are comprised between 1 and
N − 1:

TN = eikN
N∏

n=1

1

1 − iνn(1 + e2ik Rn−1)
. (11)

For weak disorder we expand (11) to successive orders in the site energies εn . As will be readily
seen below, the validity of this perturbation expansion is restricted typically to chain lengths
L � Lc (the weak localization regime), where Lc is the localization length for weak disorder
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first derived by Thouless [10]. The study of the dispersion of the transmission coefficient
requires the inclusion of terms up to fourth order in the expansion of (11). We thus obtain

TN = eikN

[
1 +

N∑
m=1

(Pm − 1) +
N∑

m,n=1
m �=n

(Pm − 1)(Pn − 1)

+
∑

m,n,p
m �=n �=p �=m

(Pm − 1)(Pn − 1)(Pp − 1)

+
∑

m,n,p,q
m �=n �=p �=q
n �=q �=m �=p

(Pm − 1)(Pn − 1)(Pp − 1)(Pq − 1)

]
,

Pj = 1

1 + x j
, x j = −iν j (1 + e2ik R j−1).

(12)

In each one of the successive terms in (12), we then retain contributions up to fourth order in
the variables ν j , via the expansion of the Pj in power of x j and corresponding expansions of
R j in successive order contributions in the reflection amplitudes,

Rn =
4∑

q=1

R(q)
n . (13)

The contributions R(q)
n at successive orders q are determined by the perturbation equations

obtained by expanding the recursion equation analogous to (9) relating Rn and Rn−1 for systems
of length 1 � n � N − 1 and n − 1:

R(1)
n = e2ik R(1)

n−1 + iνn, (14a)

R(2)
n = e2ik R(2)

n−1 + 2iνne2ik R(1)

n−1 − ν2
n , (14b)

R(3)
n = e2ik R(3)

n−1 + 2iνne2ik R(2)

n−1 + iνne4ik R(1)2
n−1 − 2ν2

n e2ik R(1)

n−1 − iν3
n , (14c)

whose solutions are

R(1)
n = i

n∑
p=1

νpe2ik(n−p), (15a)

R(2)
n = −

n∑
p=1

νpe2ik(n−p)

[
νp + 2

p−1∑
q=1

νq e2ik(p−p)

]
, (15b)

R(3)
n = −i

n∑
p=1

νpei2(n−p)
[
ν2

p − 2iνp R(1)
p−1e2ik − R(1)2

p−1e4ik − 2R(2)
p−1e2ik

]
. (15c)

Next, by using (12) and (13) and (15a)–(15c), we express the transmission coefficient
tN = |TN |2 to fourth order in the site energies and, finally, we find its average 〈tN 〉 using (5)
together with the factorization property for independent Gaussian variables,

〈εmεnεpεq〉 = 〈εmεn〉〈εpεq〉 + 〈εmεp〉〈εnεq〉 + 〈εmεq〉〈εnεp〉, (16)

which is valid for arbitrary indices m, n, p, q different or not [11].
These straightforward but rather tedious calculations yield the final result

〈tN 〉 = 1 − 2N

Lc
− 2N2

L2
c

[
5 − 1

N
− 2

N2

sin2 k N

sin2 k

(
3 +

cos2 k N

cos2 k

)]
+ O(ε6

0), (17)
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which is exact to quadratic order in ε2
0. Here

1

Lc
= ε2

0

8 sin2 k
= ε2

0

2(4 − E2)
, (18)

is the Thouless expression [10] for the localization length, which is valid to lowest order in
the weak disorder. The perturbation expression (17) shows that besides the smallness of ε2

0 its
validity requires typically N � Lc, which implies that the eigenstates are delocalized on the
scale of the chain length. We further note that while the lowest correction in 〈tN 〉 for weak
disorder is of order N/Lc, the next higher contribution proportional to ε4

0 includes three types
of terms respectively proportional to (N/Lc)

2, (N/Lc)ε
2
0 and ε4

0. By a similar calculation of
the second moment, 〈t2

N 〉, we obtain

〈t2
N 〉 = 1 − 4N

Lc
+

4N2

L2
c

[
2 − 2

N
+

1

N2

sin2 k N

sin2 k

(
4 +

2 cos2 k N

cos2 k
− sin2 k N

2 sin2 2k

)]
+ O(ε6

0). (19)

The calculation of 〈t2
N 〉 has been greatly facilitated by making use of the expression of tN to

quartic order and of the corresponding average (17). From (19) and (18) we finally get

var tN = 12N2

L2
c

[
2 − 1

N
− 1

3N2

sin2 k N

sin2 k

(
2 +

sin2 k N

2 sin2 2k

)]
+ O(ε6

0). (20)

The first and second moments and the variance of γ̄L in (1) are easily found from (17) and (19)
by expanding ln tN in powers of the small quantity 1 − tN . Thus we obtain

〈γ̄N 〉 = − 1

2N
〈ln tN 〉 = 1

Lc

(
1 +

4N

Lc

[
3 − 1

N
− 1

2N2

sin2 k N

sin2 k

×
(

4 +
cos2 k N

cos2 k
+

sin2 k N

4 sin 2k

)])
+ O(ε6

0), (21)

〈γ̄ 2
N 〉 = 1

L2
c

[
1 − 3

N
− 1

N2

sin2 k N

sin2 k

(
2 +

sin2 k N

2 sin 2k

)]
+ O(ε6

0), (22)

σ 2 = var γ̄N = 3

L2
c

[
2 − 1

N
− 1

N2

sin2 k N

sin2 k

(
2 +

sin 2k N

2 sin 2k

)]
. (23)

By ignoring the terms of orders 1/N and 1/N2 relative to unity in the square brackets of (21)–
(23) it thus follows that

σ 2 = 6(〈γ̄N 〉)2 + O(ε6
0). (24)

3. Discussion and concluding remarks

Equation (24) is a universal relation expressing the variance of the scaling variable γ̄N in terms
of the mean, which is itself defined in terms of the Thouless localization length (18) alone,
when terms of order 1/N and 1/N2 are neglected relative to unity in (21). It is natural to
expect that, within the same approximation, similar universal forms in terms of 〈γ̄N 〉 exist for
the higher fluctuation cumulants of γ̄N . Thus our work suggests that the exact distribution of
γ̄N (which does not rely on phase randomization) in the weak localization regime obeys SPS.
Note that (24) differs by a factor of 6 from the universal relation (3) for the weak localization
regime obtained under the phase randomization assumption. We observe in passing that the
mean of γ̄N in (21) differs from the Thouless inverse localization lengths (18). This is because
the inverse localization length is, by definition, the non-random central limit of γ̄N . In order
to obtain L−1

c from our analysis for N � Lc one has to let |ε0| → 0 before taking the large N
limit. In this limit only the leading order term of the weak disorder expansion of 〈tN 〉 in (17) is
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relevant for finding L−1
c . We believe that the reason why this term yields the correct (Thouless)

localization length in spite of the fact γ̄N is not self-averaging in the domain N � Lc is because
the non-self averaging is only marginal, i.e. limN→∞ lim|ε0|→0

σ 2

〈γN 〉2 = constant in this case.
The aim of the present work has been to discuss the scaling of γ̄L in the weak localization

regime without using the phase randomization hypothesis. In this context we now compare
the above results for the transmission coefficient moments with earlier results [12] obtained
from an invariant imbedding model [13, 14] analysed by assuming phase randomization [12].
The coupled invariant imbedding equations for the complex reflection (RN ) and transmission
coefficients (TN ) [13, 14] have since been shown [8] to correspond to the continuum limit of the
Schrödinger equation for the one-dimensional Anderson model for weak disorder. This makes
the comparison of the present results with those of [12] the more relevant. Under the random
phase assumption we obtained the following exact results2 for the transmission coefficient
moments for L � Lc:

〈tm
N 〉 =

(
1 + 2m

N

Lc

)−1

, m = 0, 1, 2, 3, . . . , (25)

which leads to the distribution of the transmission coefficient [12]

Pt (tN ) = Lc

2N
t (Lc/2N−1), (26)

which depends on the single scale parameter Lc. Note that the exact moments (17)
and (19) which do not rely on the random phase assumption reveal important deviations from
equation (25) at order ε4

0, even when the terms in 1/N and 1/N2 in the square brackets are
neglected3. The exact random phase expression for var tN ,

var tN = 4N2

L2
c

(
1 + 4N

Lc

)(
1 + 2N

Lc

)2 , (27)

obtained from (25) differs also from the exact expression (20) to order N2/L2
c. For the sake of

completeness we finally list the expressions for the first and second moments and the variance
of γ̄N obtained from expanding the logarithm of (25) for m = 1 and 2 through order ε4

0:

〈γ̄N 〉 = 1

Lc

(
1 − 2N

Lc

)
, (28)

〈γ̄ 2
N 〉 = 4

L2
c
, (29)

σ 2 = (〈γ̄N 〉)2. (30)
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